Overdispersed Count Models for mRNA Transcription
نویسندگان
چکیده
منابع مشابه
On Hinde-Demetrio Regression Models for Overdispersed Count Data
In this paper we introduce the Hinde-Demétrio (HD) regression models for analyzing overdispersed count data and, mainly, investigate the e¤ect of dispersion parameter. The HD distributions are discrete additive exponential dispersion models (depending on canonical and dispersion parameters) with a third real index parameter p and have been characterized by its unit variance function + p. For p ...
متن کاملBayesian generalized additive models for location, scale and shape for zero-inflated and overdispersed count data
Frequent problems in applied research that prevent the application of the classical Poisson log-linear model for analyzing count data include overdispersion, an excess of zeros compared to the Poisson distribution, correlated responses, as well as complex predictor structures comprising nonlinear effects of continuous covariates, interactions or spatial effects. We propose a general class of Ba...
متن کاملDirichlet negative multinomial regression for overdispersed correlated count data
A generic random effects formulation for the Dirichlet negative multinomial distribution is developed together with a convenient regression parameterization. A simulation study indicates that, even when somewhat misspecified, regression models based on the Dirichlet negative multinomial distribution have smaller median absolute error than generalized estimating equations, with a particularly pr...
متن کاملQuantile regression for overdispersed count data: a hierarchical method
Generalized Poisson regression is commonly applied to overdispersed count data, and focused on modelling the conditional mean of the response. However, conditional mean regression models may be sensitive to response outliers and provide no information on other conditional distribution features of the response. We consider instead a hierarchical approach to quantile regression of overdispersed c...
متن کاملRobust Estimation and Outlier Detection for Overdispersed Multinomial Models of Count Data
Robust Estimation and Outlier Detection for Overdispersed Multinomial Models of Count Data We develop a robust estimator—the hyperbolic tangent (tanh) estimator—for overdispersed multinomial regression models of count data. The tanh estimator provides accurate estimates and reliable inferences even when the specified model is not good for as much as half of the data. Seriously ill-fitted counts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics
سال: 2016
ISSN: 1303-5010
DOI: 10.15672/hjms.2017.422